STRADA: A Tool for Scenario-based
Feature-to-Code Trace Detection and Analysis

Alexander Egyed
Teknowledge Corporation
4640 Admiralty Way
Marina Del Rey
CA4 90292, USA

Abstract

Software engineers frequently struggle with
understanding the relationships between the source
code of a system and its requirements or high-level
features. These relationships are commonly referred to
as trace links. The creation and maintenance of trace
links is a largely manual, time-consuming, and error-
prone process. This paper presents STRADA
(Scenario-based TRAce Detection and Analysis) — a
tool that helps software engineers explore traces links
to source code through testing. While testing is
predominantly done to ensure the correctness of a
software system, STRADA demonstrates a vital
secondary benefit: by executing source code during
testing it can be linked to requirements and features,
thus establishing traceability automatically.

1. Introduction

Understanding the relationships between the
features of a software-intensive system (i.e.,
requirements) and its implementation (i.e., source
code) is very difficult. Software traceability aims at
defining such relationships. Trace links support
engineers in understanding complex software systems
and answer questions about completeness, conflict,
coverage, or consistency. A significant body of work
has been published about the usefulness of software
traceability [5][6][1] and the need for traceability has
expedited its way into numerous software engineering
standards and initiatives, such as ISO 15504, MDA, or
the CMMI. However, trace identification and evolution
requires significant effort [6] and is thus highly
challenging for both researchers and practitioners.

Tool support is essential for dealing with the scale
and complexity of traceability in real-world systems.
Here we present STRADA, a tool for Scenario-based
TRAce Detection and Analysis. STRADA provides
two major capabilities:

29th International Conference on Software Engineering (ICSE'07 Companion)
0-7695-2892-9/07 $20.00 © 2007 IEEE

Gernot Binder
Systems Engineering and
Automation
Johannes Kepler University
A-4040 Linz, Austria
aegyed@teknowledge.com Gernot.Binder@students.jku.at

Paul Griinbacher
Christian Doppler Laboratory for
Automated Software Engineering

Johannes Kepler University
A-4040 Linz, Austria
Paul.Gruenbacher@jku.at

(1) Scenario-based Trace Capture: Given a set of
features and knowledge on how to test those features,
the tool silently observes what code is being accessed
during testing. The tool then concludes that the code
accessed during the testing of a feature must
implement that feature — a trace dependency. However,
the features of a software system are typically
interwoven in the implementation (i.e., crosscutting
concerns). This is evident in two, rather common,
situations: (i) Test scenarios typically relate to more
than one feature. As a result, there is an uncertainty
about which section of the accessed code belongs to
what feature. (ii) Test scenarios often access code that
does not belong to one of its features. This is typically
the case with code that is co-located (i.e., executed
together) but otherwise independent. As a result, there
is uncertainty as to who owns any given method.

(2) Trace Analysis: STRADA helps engineers to
identify and resolve uncertainties. It does so
automatically in cases where the captured trace links
constrain one another in a way that logical
consequences exclude certain feature/method
ownerships [1]. It also provides a simple but powerful
set of features to manually assist this process when the
automated approach dead ends.

We evaluated STRADA’s trace analysis capabilities
on a half dozen industrial and open-source software
systems — including the ArgoUML, GanttProject,
Siemens Route Planner, and Video-on-Demand Player.
Although not a commercial-grade product, STRADA
is the result of thorough research on scenario-based
trace analyses over the last couple of years [1][2][3][4].

2. Tool and Experiences

Figure 1 depicts a screen snapshot of the tool which
illustrates the use of STRADA while observing the
execution of the GanttProject (lower left) through the
help of the Eclipse Profiler (upper left). Both
components of the STRADA tool have their own

COMPUTER
SOCIETY

IEE |-:

SEIES

-H0 | REE $-0-Q- &

= &P [| I Profiler 2
& STRADA by GB @
Scenario-based Trace Analysis
=l GanttProject §
o Ci\Progray
G| %| m| | o |Projectname: | Perspectives

|~

Select a Perspective: |p1

Select feature(s):

Dependency List:

Add Feature | Edit Feature | Delete Feature

+ [LoadProject
+ [AddResource
+ [AddTask

+ [PrintFile

Depender\:y [Addresource] isAtLeast [net. snurcefnvge ganttproject.io. GanttxMLSavav sava, ne
Dependency: [AddTask] isatLeast [net.sourceforge.ganttproject.io. GanttxMLSaver.save, net.sor
Dependency: [PrintFile] isatLeast [net. sourceforge. ganttproject. print. GanttPrintable. print]

The tool 1is currently
restricted to Java-based
systems because the Trace
Capture component uses a
Java profiler included in
Eclipse. =~ However, the
approach is not restricted to
this language and would also
work if integrated with profi-
lers for other languages.

References

B console . 2 [1] Egyed, A.: A Scenario-
GanttProject_Profile [= - . h T
% 28 | configure IgnoreList | Copy Ignorelist to & CopylgnnreLrsttoBl Copyto A | CopytaB Delete Dependency’ Drlven Approac to race
znipégéziing Codelist A: (Mainlist) Codelist B Dependency Analy51s. IEEE
P or e gt oo oo EED T e e el o TSE 29(2), 2003, 116-132.
net. undo.L reateTempi g i = 0L Ce undo.L ..
net.source oject.time gregorian, qetll :ZE sourceforge. ganttpm;act time.gregorian, TimeFramelmpl,getUr [2] Egyed, A., Grunbacher,
net.source ject. ki ian, Time getLir net.source ject. ki imeFy getLic . . .
pet soucef i cd AUB| ANB| |55 sourcet s P.: Identifying Requirements
e pnarged I == 17 i ot 9 - -
< Conflicts and Cooperation,
; Ioixg
7 GamiProject[tstgan] e IEEE Software 21(6), 2004.
Projekt Bearbeiten Ansicht Vorgange Ressource | o - | Footpr mGﬁnhl THS Graoh Modelto Code Matrix |Ma delto Model Mtrix | Detais (Texua) | Log | [3] Egyed A Griinbacher
gltEnl | wp % =2 | TLOIEE = o ’
- £ Gantt | () Ressource gggz:it P, Suppqrtmg. Software
g258t Understanding with Automa-
Er.ics ted Traceability, Int'l Journal
project B 225828 7. X
Vogeng | eforn | ende U z Hl 50 -CDGR of Software Engineering and
X py 40 =>C . .
Neuer Vorgang_3 08.09.06 19.09.0)
MeuerVorgang_¢ 19.09.06 20.09.0 LoadProjectis) R) il) Nl) 0 - KIIOWledge Englneerlng,
TR oL.0.06 o] PrintFile s |s s [s|s s[s U's w0 Vol. 15’ No. 5’ World
mif | Scientific Publishing Comp.,
| T, WS e iyt PP 783-810,2005
PR f.»:E,i;s.uﬁé”a‘ﬁé‘é’ﬁgﬁni‘?ifﬁ?ga"“"“"e“‘E‘ [4] Egyed, A., Heindl, M.,
relevant model code groups : {CEG:LoadProject->[net chart paintinet sourcefor A
=>CD: GRANULAR: The Code Assumption net sourceforg chart. air paint is shared among | Blfﬂ, S" and Gl'lll’lbachel', P“
= : = Determining the Cost-
: : : - : ualit Trade-off for
Figure 1. STRADA with Eclipse Profiler and Ganttproject Quality
Automated Software

visualizations. The Trace Capture component (middle)
is currently observing the execution of a test scenario
for the “Add Resource” feature. The Trace Analysis
component (bottom right) is visualizing the current
knowledge on feature-to-code mapping in form of a
trace matrix.

STRADA can be applied to any software system
that can be observed during execution. It does not
necessarily require source code, though source code
allows point-inspections to clarify uncertainties. The
use in distributed environments is limited to the ability
of the profiler. When working with STRADA one has
to be aware of the limitations of profilers which
monitor the execution but neither understand the code
they observe nor a system’s features. During testing,
profilers are unable to detect whether a steam of
method invocations are logically connected or belong
to separate requirements/feature that just happen to be
executed at the same time.

29th International Conference on Software Engineering (ICSE'07 Companion)
0-7695-2892-9/07 $20.00 © 2007 IEEE

Traceability, Proceedings 20th IEEE/ACM Int. Conf.
on Automated Software Engineering, Long Beach, CA,
2005.

[5] Gotel, O. C. Z. and Finkelstein, A. C. W.: An
Analysis of the Requirements Traceability Problem,
Proc. I'" Int. Conf. on Rqts Eng., 1994, pp.94-101.

[6] Ramesh, B., Stubbs, L. C., Edwards, M. Lessons
learned from implementing requirements traceability.
Crosstalk, 8(4):11-15, 1995.

[7] Ramesh, B., Jarke, M.: Toward Reference Models
of Requirements Traceability. IEEE TSE 27(1): 58-93
(2001)

COMPUTER
SOCIETY

IEE l-i

